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A simpler and more rigorous derivation is presented for the LET (Local Energy 
Transfer) theory, which generalizes the theory to the non-stationary case and which 
corrects some minor errors in the original formulation (McComb l978), Previously, 
ad hoc generalizations of the LET theory (McComb & Shanmugasundaram 1984) 
gave good numerical results for the free decay of isotropic turbulence. 
The quantitative aspects of these previous computations are not significantly affected 
by the present corrections, although there are some important qualitative 
improvements. 

The revised LET theory is also extended to the problem of passive scalar 
convection, and numerical results have been obtained for freely decaying isotropic 
turbulence, with Taylor-Reynolds numbers in the range 5 < R, < 1060, and for 
Prandtl numbers of 0.1, 0.5 and 1.0. At sufficiently high values of the Reynolds 
number, both velocity and scalar spectra are found to exhibit Kolmogorov-type 
power laws, with the Kolmogorov spectral constant taking the value 01 = 2.5 and the 
Corrsin-Oboukhov constant taking a value of p = 1.1. 

1. Introduction 
The Local Energy Transfer (LET) theory belongs to the general class of 

renormalized perturbation theories, and is a two-point, two-time closure of the 
Navier-Stokes hierarchy in the Eulerian coordinate frame. Originally, the develop- 
ment of this theory was motivated by the need to eliminate the infrared 
divergence, which occurs when one assumes that the Kolmogorov energy spectrum 
applies at  all wavenumbers in the limiting case of infinite Reynolds number. (This 
corresponds to a gedanken experiment, in which the fluid viscosity is allowed to 
shrink to zero, while the rate at which the arbitrary stirring forces do work on the 
system is maintained constant.) The basic ansatz of the LET theory is that the 
renormalized (or turbulent) response may be obtained from a consideration of the 
local energy balance in k-space. The theory has been developed in a series of papers, 
which first considered the single-time stationary case (McComb 1974, 1976) and then 
the two-time stationary case (McComb 1978, hereinafter referred to as I). 
Subsequently, it was shown that an heuristic modification of the LET theory to the 
two-time, non-stationary case could be used successfully to calculate the free decay 
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of isotropic turbulence from arbitrary initial conditions (McComb & Shanmug- 
asundaram 1984 ; McComb & Shanmugasundaram & Hutchinson 1989, hereinafter 
referred to as I1 and 111, respectively). In the latter case (reference 111), our 
numerical results led us to question the importance of connective scaling in two-time 
correlations. We also put forward in I11 arguments which questioned the relevance 
of random Galilean invariance as a criterion for turbulence theories of this 
kind. 

In the present paper our first objective is to give a direct derivation of the LET 
theory for the general non-stationary case. This new treatment is not only simpler, 
but can claim to be more rigorous, insofar as certain inconsistencies in I have been 
eliminated. For instance, the derivation given in I appears to rely on the propagator 
exhibiting time-reversal symmetry ; an unrealistic property for a chaotic system, let 
alone a dissipative one. This is not a requirement in the new derivation given here. 
We also take the opportunity to correct an error in the limits on the integration over 
intermediate times, as given in I. 

Our second objective is to begin the task of assessing the potential of the LET 
theory for application to problems of practical significance. As is well known, recent 
developments in computers and in numerical methods have not been matched by any 
comparable progress with the central problem of turbulence modelling. Ideally, 
renormalized perturbation theories would provide a possible way forward in this 
area, but evidently they must recognize the engineer’s need for predictive methods 
which can be applied to flows with a mean rate of shear and which can also handle 
heat and mass transfer. However, the difficulties involved in taking inhomogeneity 
and anisotropy into account are formidable, so as a first step in taking the LET 
theory along the road to practical applications, we consider here the prediction of 
passive scalar convection for the homogeneous, isotropic case. We also note in 
passing that this has proved in the past to be a severe test for other two-point, two- 
time closures. 

Lastly, and especially for those readers whose immediate concern is with 
applications, we should emphasize that the LET theory makes no claim to being a 
rational approximation to the Navier-Stokes equations. Like all other closures of 
this type, it relies on a second-order truncation of a renormalized perturbation series 
of unknown convergency properties. At this stage, therefore, our strategy is both 
pragmatic and conventional. We aim to test the LET theory on a hierarchy of 
increasingly more complex problems, and this paper should be seen as part of that 
process. 

2. Basic equations 
In  this section we briefly summarize those aspects of the Fourier analysis of the 

Navier-Stokes equation which will be needed in this paper. We begin by considering 
an incompressible fluid in a cubical box of side L. This is our basis for decomposing 
the velocity field into its discrete Fourier components. At a later stage we take the 
limit as L tends to infinity (which is required for rigorous isotropy) and summations 
are replaced by integrals. 

If we let the velocity field be u,(x, t ) ,  then the Fourier components u,(k, t )  are 
defined by 

u,(x, t )  = u,(k, t )  eik.x. (2.1) 
k 
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For an incompressible fluid, the Navier-Stokes equation then becomes 

while the continuity equation takes the form 

k,u,(k, t )  = 0. 

n a p y ( k )  = (2i)-’[le,Day(k) + lc,Dap(’)l, 

The inertial-transfer operator Mapy(k) is defined by 

where the projection operator Da#) is given by 

D,(k) = Sas-ka kp)kl-2. (2.5) 
As always in this kind of work, we consider velocity fields with zero mean, and so the 
main statistical quantity of interest is the pair-correlation of velocities, which is 
introduced through the relationship 

(2.6) 
For isotropic turbulence, we simplify matters by introducing the correlation function 
Q ( k  ; t ,  t’), which is defined by the relationship 

(2.7) 

(2.8) 

( L / 2 W u a ( k ,  t )  up(-k, t’)) = Qa/& t ,  t’). 

Qab(k ; t ,  t’) = Dal(k) Q ( k ;  t ,  t’), 

E(k,  t )  = 47ck2Q(k; t ,  t ) .  

and can be expressed in terms of the energy spectrum E(k ,  t )  as follows : 

The basic hypothesis of the LET theory has been (see I) that the turbulent 
response can be represented by an exact propagator, which connects the velocity 
field, associated with mode k, to itself at a later time. (It may be worth noting that 
the graphical methods used by Wyld 1961 to construht partial Sums of the primitive 
perturbation series imply the existence of a propagator, at the level of a line- 
renormalized expansion in the moments of the exact velocity field: we shall say a 
little more about this, in the next section.) In I, we defined the velocity-field 
propagator Ha,(k; t ,  s) by the relationship 

(2.9) u,(k, t )  = Ha,(’; t ,  t’) u,(k t’), 

where I H,(k ; t , 8 )  H,(k ; s, t’)  = Ha# ; t , t’) ; 
Hap(k ; t , t )  = 1. 

(2.10) 

Again, for the case of isotropic turbulence, we can express this in terms of a scalar 

(2.11) function, thus 

where H ( k  ; t ,  t’) is referred to as the propagator function. In the present paper, we 
shall replace (2.9) by a statistical form, based on correlation functions. This will make 
the statistical character of the propagator more apparent. 

Ha& t ,  t’) = D,(k)H(k;  t ,  0, 

3. A modified derivation of the LET equations 
In this section, we shall give a short account of the way in which the LET 

equations may be derived using renormalized perturbation theory. In physical 
terms, we may think of a fluid which is arbitrarily set into motion, with a velocity 
field which varies randomly with position and time, and which has Gaussian 
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statistics. This is our zero-order field, and we shall denote it by u;O)(k, t ) .  We now 
imagine that the nonlinear term is switched on, whereupon the exact, non-Gaussian, 
velocity field is generated by the mode-couplings induced by the convolution sums 
in k-space. That is, in mathematical terms, the exact velocity field can be rigorously 
expressed in terms of an infinite series in the zero-order Gaussian velocity field. 
Naturally, the coefficients in this series are obtained by iterating the Navier-Stokes 
equation. (It is perhaps worth noting that this formulation of the turbulence problem 
is often discussed in terms of arbitrary random forces. However, such stirring forces, 
although an essential feature of certain theories, are not intrinsic to a general 
formulation of this type, and we shall not require them here.) 

It is an obvious corollary of the above statements, that the exact correlation 
function can be obtained as an infinite series in the moments of the zero-order field. 
It also follows, from the Gaussian nature of the zero-order field, that this infinite 
series can be further expressed solely in terms of the products and convolutions of the 
pair correlation of the zero-order field. However, although the resulting series 
corresponds to a rigorous solution of the Navier-Stokes equations, it should be 
understood that it will in general be wildly divergent. This is because the iteration 
is in terms of the inverse of the viscous operator on the left-hand side of (2.2). Hence, 
the expansion is effectively in powers of the Reynolds number, and diverges in all 
cases of interest. 

The possibility of obtaining a renormalized expansion, which might have better 
properties than the primitive series, was first recognized by Kraichnan (1959), in the 
form of the Direct-Interaction Approximation or DIA; and was given a more 
general, diagrammatic analysis by Wyld (1961). The basic idea is quite simple. One 
replaces the zero-order correlation and response functions at all points in the 
expansion by their exact forms. This procedure corresponds to summing certain 
classes of terms in the primitive series to all orders (Wyld 1961). Also, more recently, 
Kraichnan (1977) has reinterpreted this formalism in terms of the technique of 
reversion of power series. 

The problem now becomes one of defining the renormalized (turbulent) response, 
such that one may truncate the series at  low order (usually second order) and hence 
obtain closed equations for the exact correlation and response functions. In DIA, the 
closure is obtained by concentrating on the relationship between the velocity field 
and the stirring forces. In the LET theory (in I), we introduced the propagator 
through equation (2.9) and obtained its governing equation from a consideration of 
the local energy balance in k-space. We shall adopt a slight variation on this 
approach in the following sections. 

3.1, Perturbation expansion of the Navier-Stokes equations 
Formally, we introduce the perturbation series for the velocity as an expansion in 
terms of a book-keeping parameter A ,  thus 

(3.1) 

We also introduce the zero-order propagator as the Green’s function of the linear 

(3.2) 

= 0, t < t’. (3.3) 

u,(k, t)  = uLo)(k, t) +huL1)(k, t) +O(h2) ,  

where h is put equal to one at the end of the calculation. 

operator on the left-hand side of (2.2), or through 

[a/at+ ~k’]H$(k; t ,  t’) = D,&k) s(t- t’ ) ,  
and hence, HLy(k;t,t’) =DaB(k)exp{-vk2(t-t’)}, t > t’, 
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The perturbation solution may be obtained in the usual way, by substituting the 
expansion for u , ( k , t )  into the right-hand side of (2.2), and associating the book- 
keeping parameter h with the inertial-transfer operator Map,,(k), thus 

+huf’(j , t)u$9(k-, j , t)+ ...I. (3.4) 

The individual coefficients u(l), . . . , are readily obtained by expanding the left- 
hand side of (2.2) and equating coefficients of each power of A. This can be done to 
all orders, but we shall only require the first order here; and this is 

3.2. Basic amatz of the LET theory 
Since the velocity-field propagator exists, in principle, as an expansion in the 
moments of the Gaussian zero-order velocity field, two of its properties follow 
immediately. First, it  is statistically sharp, so we have 

(3.6) 

Secondly, its expansion in powers of the book-keeping parameter h contains only 
even-order terms, thus 

(3.7) 

The statistical form of the LET theory’s basic hypothesis is introduced in the 
following way. Let us invert the operator on the left-hand side of (2.2), multiply both 
sides by ue( - k ,  t’), and average, to obtain the exact result for the correlation tensor 

(H,,(k; t ,  t ’ ) )  = HUB@; t ,  t’). 

Hap(k ; t ,  t’) = Hiy(k ; t ,  t’) + A2H$ (k ; t ,  t’) + O(A4). 

We may also derive a relationship for the correlation tensor by carrying out the same 
sequence of operations on equation (2.9), but this time we also need the property 
(3.6), and this gives us 

(3.9) 

This now replaces (2.9) as the defining equation for H ,  and our basic ansatz for closure 
of the NavierStokes equation becomes a postulate of the equivalence of (3.8) and 
(3.9). 

3.3. The generalized covariance equation 
As a preliminary to obtaining closed equations for the oorrelator and propagator 
functions, we first derive the generalized covariance equation. To do this, we invoke 
(2.9) in order to write the NavierStokes equation in the form 

[;+ vk2] u,(k, t )  = AJf,p,,(k) x upci ,  t )  u,(k-j, t ) .  

&&; t ,  t’) = Hu,(k; t ,  t’) &,(k; t ,  t’) .  

(3.10) 
I 

We then multiply both sides by uE( - k ,  t’) and average, thus 

[i+ v 4  <u,(k, t )  u,( -k, t ’ ) )  = AX~,p,,(k)(upCi, t )  u,(k-j, t )  u,( -k, 0) .  (3.11) 
i 
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The triple moment on the right-hand side can be expanded out, using (3.1), 
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[ ~ + v k 2 ] ( u a ( k , t ) u e ( - k , t ’ ) )  = h&lfa,&) [(u$”(j,t)Up)(k-j,t)ujO)(-k,t’)) 
j 

+h(ulP’Ci,t)up’(k-j,t)u~’(-k, t’))+2h(~~’V,t)u~’(k-j,t)~!O’(-k, t‘))+O(h2)],  
(3.12) 

and, substituting from (3.5) for u(l), we obtain the generalized covariance equation, 
at  second order in do), with higher orders readily being obtained by iteration. 

Now we follow much the same procedure as was used to derive the DIA 
(Kraichnan 1959). We do this as follows: 

(i) Evaluate the moments of the zero-order velocity field (in principle, to all 
orders) in terms of Q ( O ) ,  using the Gaussian statistics of the zero-order field. 

(ii) Make the replacements Q ( O )  + Q and H(O) + H ,  put the book-keeping parameter 
h = 1, and truncate the expansion, which is the right-hand side of the generalized 
covariance equation, at second order. 

(iii) Lastly, we make the usual simplification for isotropic turbulence, by 
substituting the tensor forms given by (2.7) and (2.11), and summing over a = E .  

The result is easily found to be the exact’ generalized covariance equation at second 
order, thus 

[ + vk’] &( k ; t ,  t’) = F j L ( k ,  j) [ 1 dt” H (  k ; t’, t”) Q(i ; t ,  t”) Q(lk -jl; t , t”) 

- [ dt”H(j ; t ,  t”) Q ( k ;  t”, t’) &(lk-jl; t ,  t”) + O(h4) , (3.13) 1 
where it can be shown that the coefficient L(k,j) takes the form 

b ( k 2  +jz) - kj( 1 + 2p2)] (1 -p2) kj 
k2 +j2 - 2kjp L(k, j )  = 7 (3.14) 

and p is the cosine of the angle between the vectors k and j .  

3.4. The L E T  equations for the correlation and propagator functions for isotropic 
turbulence 

We summarize here the equations which make up the LET theory for the particular 
case of isotropic turbulence. First, we invoke (2.7) and (2.11), so that we may write 
(3.9), which defines the propagator, in the form 

Q(k; t , t ’ )  =H(k:t , t ’ )Q)k; t ’ , t ’ ) ,  t >t’. (3.15) 

Then, for completeness, we repeat here (3.13), with the term O(h4) dropped, as our 
equation for the two-time correlation function, thus 

- [ dt” H(j  ; t ,  t”) &(k ; t”, t ’ )  Q(lk-jl; t ,  t ” )  ; (3.16) I 
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along with the energy equation in the form 

[;+ vk’1 Q ( k ;  t ,  t )  = 

2 d3jl(k,j) dt”&(lk-jl; t ,  t”)  [ H ( k ;  t ,  t ” )  &(j; t ,  t “ ) -HG;  t ,  t”)  ( Q ( k ;  t ,  t ’ ) ] ,  (3.17) I 1  
which is just the special case of the correlation equation, evaluated on the time 
diagonal, when t = t’. 

It should be noted that (3.15)-(3.17) form a closed set for the three functions 
&(k; t ,  t ’ ) ,  &(k; t,  t’)  and Q ( k ;  t ,  t ‘ ) .  This set is the basis of our numerical calculations of 
freely decaying turbulence, which we shall present later on in this paper. However, 
it should also be noted that previously an essential feature of the LET theory has 
been an evolution equation for the propagator (also referred to 4s the response 
equation). Although we do not need such an equation for the purpose of numerical 
calculation, it is nevertheless of some interest in elucidating the difference between 
the corrected form of the LET theory presented here and the form reported 
previously. 

Accordingly, we close this section by remarking that substitution from (3.15) into 
the left-hand side of (3.16) leads to 

dt”Q(k;t”,t’)H(j;t,t’’)Q(lk-jl;t,t”) ; (3.18) 1 
and this is the LET response equation. 

3.5. Comparison of LET with DIA 
Comparison with DIA (Kraichnan 1959) has been made previously (I, I1 and 111), 
and our object here is only to  modify those previous comparisons insofar as the 
current version of the LET response equation is different from earlier forms. To begin 
with, we mention for completeness that (3.16) and (3.17) are, notational differences 
aside, identical to their DIA equivalents. The differences between the two 
formulations lie solely in their respective response equations. 

We may demonstrate this by dividing up the integral over 0 < t” < t on the right- 
hand side of (3.18) into two ranges 0 < t” < t’ and t’ < t” < t ;  using (3.15) to write 

&(k; t ’ , t” )  = &(k;t”, t ’ )  = H(k;t”,t’)Q(k;t‘,t’), t ’ <  t” < t ,  

and rearranging (3.18) to obtain 

- &(k ; t’, t”) H ( j ;  t ,  t”)} . (3.19) 1 
The comparable form in DIA is the equation for the response function G(k; t , t ‘ ) ,  
which is analogous to H ( k ; t ,  t ’ )  here. Comparison of (3.19) with the corresponding 

10-2 
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DIA form (Kraichnan 1959), shows that the two left-hand sides are the same, but 
that (3.19) has additional nonlinear terms on the right-hand side. 

As is well known, the DIA response equation is divergent when the limit of infinite 
Reynolds number is taken: its wavenumber convolution integral diverges at k = j ,  
when the Kolmogorov distribution is taken to apply at  all wavenumbers. It is quite 
easily shown that the additional term on the right-hand side of the LET response 
equation (3.19) will cancel this divergence, as we take the limit k tends to j .  

4. Numerical analysis 
Equations (3.15)-( 3.17) for the velocity-field correlations and propagators were 

applied to four test problems. These are summarized in table 1, where all the relevant 
initial parameters are given. Evolved values of the same parameters, corresponding 
to the end of each calculation, will be found in table 2. It should be noted that test 
problems 1-3 are based on spectral shapes which may be found in figure 1 of 11, and 
cover low to intermediate values of the Taylol-Reynolds number. The calculations 
at  high Reynolds numbers were based on an initial spectrum suggested by Herring 
(see 111), which is given here as test problem 4. 

In  order to carry out the calculations, both wavenumbers and times were 
discretized and equations integrated forward in time from arbitrarily chosen initial 
spectra. Full details of the numerical procedures will be found in Section 4 of 11, and 
will not be repeated here. However, for convenience we shall summarize the 
definitions of the various integral parameters in this section. 

4.1. De$nitions of the integral parameters 
The general form of the trial spectrum is given by 

E ( K ,  0 )  = c1 Kczexp ( -c3 kC4), (4.1) 

where the values of the constants for each spectrum are given in table 1. The r.m.s. 
velocity of any velocity component, u(t), and the rate of dissipation per unit mass are 

and 

E( t )  = [ r E ( k ,  t )  dk = j[u(t)12 

00 

~ ( t )  = 2v10 k2E(k, t )  dk. (4.3) 

The transfer spectrum is given by 

T(k, t )  = 8xk2P(k; t ,  t ) ,  (4.4) 
where P ( ( k ; t , t )  is given by the right-hand side (3.17), with t’ = t .  The total rate at 
which energy is transferred from all the modes p < k to all the modes p > k is given 
by the transport power U(k, t ) ,  which is related to the transfer spectrum, thus 

The modal time-correlation is defined by 
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such that R(k;t,t) = 1. (4.7) 

The integral lengthscale L(t)  and the Taylor microscale A ( t )  are defined by 

L(t) = [$Io" le-lE(k, t )  dk]/E(t), 

h(t) = [5E(t)  / c" k2E(k, t )  dk]:, 
L I J o  

with the associated Reynolds numbers 

R,(t) = W )  u( t ) / v ,  

and Rh(t) = h(t) u( t ) /v .  

The skewness of the longitudinal velocity derivative 

( 4 . 8 ~ )  

(4.8b) 

(4.9) 

(4.10) 

is given by 

k2T(k, t )  dk, 

while the one-dimensional energy spectrum, q51(t), is given by 

1 "  
q5l(t) = 2J (1  - k 2 / P Z )  P-'E(P, t )  dP, 

k 

and the Kolmogorov dissipation wavenumber is defined by 

k,  = (s/v3)'. 

(4.11) 

(4.12) 

(4.13) 

5. Passive scalar convection 
One of the most important practical aspects of fluid turbulence is its mixing 

ability, particularly in the transport of heat and mass. Here we shall make a 
preliminary assessment of the performance of the LET closure on this aspect of 
turbulence, by considering the idealized problem of passive scalar convection. As in 
the case of the velocity field, we shall consider the free decay of isotropic turbulence. 

We shall represent the general scalar property by e(x, t ) ,  which can stand for any 
contaminant or tracer. But, for definiteness, we shall take it to be temperature, so 
that the relevant dimensionless parameter (in addition to the Reynolds number) is 
the Prandtl number Pr, which is given by 

Pr = V / K ,  

where K is the thermal diffusivity and is given by the thermal conductivity divided 
by the density of the fluid. 

5.1. Basic equations 
The governing equation for the scalar field e(x, t)  takes the well-known form 

%(X, t ) / a t  -t ( U p ( X ,  t )  a/&Cp) e(X, t )  = K v 2 8 ( X ,  t ) ,  (5.1) 

where K is the thermal diffusivity. A source term can also be added, but as we shall 
only be considering the free decay from arbitrary initial distributions of temperature, 
we shall not pursue that aspect here. The same approach may be adopted as earlier, 
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in the case of the velocity field, by the introduction of the Fourier components of the 
temperature field, thus 

B(k, t )  = B(x,  t )  eik.x. (5 .2)  
k 

Then, direct substitution into (5.1) immediately yields the governing equation for 
B(k, t )  in the form 

(;+xk2)8(k,  t )  = - i k g x u g ( k - j , t ) e ( i , t ) .  
i 

(5.3) 

This equation is, of course, the scalar equivalent of the Navier-Stokes equation, in 
the form of (2.2) ; and we can generalize other such relationships to the scalar case, 
in the process of introducing a statistical treatment. Taking the scalar field to have 
zero mean, then the lowest non-trivial statistical moment is the two-point correlation, 
and (2.6) for the isotropic, homogeneous velocity field generalizes to the cor- 
responding relationship for the scalar field, thus 

( ~ / 2 ~ ) 3 ( 8 ( k , t )  B ( F ,  t ) )  = q k ;  t ,  t o  ~ ( k + k / ) .  (5.4) 

Then, the analogue of the energy spectrum - the distribution of mean-square 
temperature fluctuations with wavenumber - follows at  once as 

(5 .5)  E,(k, t )  = 47ckW(k; t ,  t )  ; 

along with the dissipation rate of mean-square temperature fluctuations 

s,(t) = 1: 2 ~ k ~ E , ( k ,  t )  dk, 

and the balance equation 

aE,(k, t)/at+2Kk2EO(k, t )  = T,(k, t ) ,  (5.7) 

where the transfer spectrum T,(k, t ) ,  is defined by analogy with (4.4) for the velocity 
field. 

We conclude this section by listing some definitions which will be helpful in 
analysing our results for scalar spectra. First, we note that the dissipation-range 
velocity scale, 

can be supplemented by an analogous scale for the dissipation range of wavenumbers 
of temperature fluctuations, namely 

v&) = ( 4 t )  4, (5 .8)  

B,( t )  = [ V € i ( t ) / € ( t ) ] f .  (5 .9)  

Also, the additional parameters introduced with the scalar problem require the 
introduction of additional wavenumber scales in order to permit the characterization 
of the possible combinations of velocity and scalar fields. For our purposes here, it 
will be sufficient to introduce the Batchelor wavenumber 

k ~ ( t )  = (€( t ) /VK2) '  (5.10) 

and the Oboukhov-Corrsin wavenumber 

ko,(t) = ( € ( t ) / K 3 ) 3 .  (5.11) 

These can be used in conjunction with the Kolmogorov dissipation-range 
wavenumber, which we defined earlier in (4.14). 
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5.2. The LET equations for passive scalar convection 
Although (5.3) for the scalar field is linear, when we attempt a statistical treatment 
we still face a closure problem. This is because it is the fluctuations in the velocity 
field which induce the fluctuations in the scalar field. Accordingly we treat this 
problem by an extension of the existing LET theory for the velocity field. This may 
be accomplished by generalizing the basic hypothesis of LET, as stated in (3.15), to 
introduce a propagator Hee(k;  t ,  t ’ )  which connects the scalar field to itself at later 
time. That is, by analogy with (3.15), we write 

O ( k ;  t ,  t ’ )  = Hee(k; t ,  t’)  @ ( k ;  t’, t ’ ) ,  (5.12) 
for the scalar case. 

We could also introduce cross-relations of the velocity and scalar fields, with 
corresponding cross-propagators scalar -+ velocity and velocity + scalar, but the first is 
ruled out by our restriction to passive convection, and the second by the symmetry 
requirements of istropic turbulence. 

The application of the renormalized perturbation theory, which follows the 
introduction of (5.12) as basic ansatz, involves some lengthy algebra which has been 
given by Filipiak (1991), and will not be repeated here. The end result is a closed 
equation for the two-time scalar field autocorrelation, which (at second order in 
renormalized perturbation theory) is given by 

k2j2( 1 - p2) 
( i + n k z )  @ ( k ;  t ,  t’) = d3j kl+j2-2jk,u[- l i  dsHee(j; t ,  S )  &(lk-jl; t ,  S )  O(k;  S ,  t’) 

+ dsHee(k;  t ’ , ~ )  &(Jk- jJ; t ,s)  @(j ; t ,  s)], (5.13) l: 
with a corresponding result for the single-time case ; thus 

(;+2xkl) O(k; t ,  t )  = 2 
k2 + j2 - 2jkp 

ds [Hee(j ; t ,  S) &( Ik -jl; t ,  S) O( k ; S, t )  + Hee( k ; t ,  S) &( Ik -jl; t ,  S) O(j ; t ,  s)] (5.14) 

It should be noted that the above three equations for the scalar field are analogous 
to (3.15)-(3.17) for the velocity field; in that they form a complete set for the 
functions Hee(k;  t ,  t ’ ) ,  O(k;  t ,  t’) and O(k;  t ,  t ) ;  and that they can be integrated forward 
in time from arbitrary initial scalar spectra, provided that the velocity field is either 
already known a t  all points and times, or is simultaneously calculated from 
(3.15)-(3.17). Some of the results obtained in this way will be given in $6.3. 

6. Results 
In  this section, we present and discuss results obtained from the numerical 

integrations of (3.15)-(3.17) for the velocity field, and from the integration of 
(5.12)-(5.14) for the scalar field. we begin by comparing the corrected form of LET, 
as presented here, with the results obtained previously. 
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FIGURE 1, Scaling behaviour of (a) velocity propagator function and ( b )  velocity correlation 
function for test problem 4: results from old (top plot, R, = 1009) and new (bottom plot, 
R, = 1040) forms of LET theory for various wavenumbers: x ,2.28; +, 4.56; 0 ,  7.24; 0, 11.49; 
0,  18.24; A, 28.96; V, 45.97. t,,, = 0.6. 

6.1. Comparison with earlier results for LET 
The difference between the present and corrected forms of LET lies in the equation 
for the propagator function for the velocity field. If we compare (3.18) of the present 
work with (2.4) of 111, it may be seen that the corrected propagator equation 
contains an extra term. As we shall now see, the effect of this extra term is to  produce 
some improvements in the qualitative behaviour of LET. 

In figures l ( a )  and l ( b ) ,  we show the response and correlation functions 
respectively, as computed for test problem 4 at high Reynolds numbers. Beginning 
with figure l ( a )  for H, we see that there is quite a marked qualitative difference 
between the corrected form of LET and the previous results (111). In  particular, the 
unphysical overshoot at short times has been eliminated. In  quantitative terms, we 
also note that the undershoot at longer times, a feature which LET shares with DIA, 
is reduced in the corrected form of LET, Similar qualitative changes may also be 
observed in the corresponding results for the correlation function, as given in figure 
1 ( b ) ;  and for both functions we might also note a marginal improvement in the 
collapse of data at different wavenumbers under the effect of Kolmogorov scaling. 

As a convenient way of summarizing the overall quantitative effect of the change 
in LET, we present calculations of the evolution of the skewness of the longitudinal 
velocity derivative (or skewness factor, for short) for test problem 1 in figure 2. The 
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t 
FIGURE 2. Comparison of the evolution of one-dimensional skewness factor for test problem 1 : 

, LET (new); ~~ , LET (old) ; -----, DIA; __-__ , SCF. 0, A, 0,  DNS 
results (Orszag & Patterson 1972). 

use of the skewness factor as a sensitive indicator of the relative performance of 
different theories is well established, and in figure 2 we show results for the old and 
new forms of LET compared with the results of the well-known numerical simulation 
by Orszag & Patterson (1972), along with our own calculations of DIA and the self- 
consistent field theory (SCF: Herring 1965, 1966) for test problem 1. It should be 
noted that the corrected LET agrees with the results from the numerical simulation 
within the ‘experimental error’ of the latter. This seems to be a satisfactory result. 

We should also note that, qualitatively, our results for these two theories are in 
agreement with the similar calculations of Herring & Kraichnan (1972) ; but, before 
we deal with the quantitative comparison, this would seem to be a suitable point to 
comment on important differences in the two approaches to numerical calculation. 
These reside mainly in the initial formulation. Herring & Kraichnan employ an 
initial analytical reduction to mathematical forms based on the scalar magnitudes of 
vectors k, j and I (say), which must then always be constrained to form the sides of 
a triangle. In  our case, the preliminary reduction leads to mathematical forms which 
depend on the scalar magnitudes k and j, along with the cosine of the angle between 
the two vectors. Of course, the two approaches are mathematically fully equivalent. 
But there are non-trivial differences in the way the various approximations of the 
numerical representation may affect the two formulations. It is our impression that 
here are significant advantages in using our formulation (see 11; also, Lee 1965), but 
we shall not pursue that here. The essential point is that we should not expect 
absolute identity of results between the two kinds of approach. 

With all these points in mind, it is nevertheless of interest to compare results for 
DIA and SCF. From Herring & Kraichnan (1971) we find that the evolved skewness 
for SCF is about 96% of that for DIA; whereas our present calculations give the 
evolved skewness for SCF as about 94% of that for DIA. This is typical of what we 
find in general, that our numerical results are within about 2% of those due to 
Herring & Kraichnan, which is quite reassuring. According to LET, the evolved 
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skewness takes the value S = 0.351, while DIA gives S = 0.344 and SCF gives 
S = 0.318. 

6.2. Development of an inertial range 
A direct criterion for the existence of the inertial range is that the rate of energy 
transfer (as defined by the transport power: see 5.5)) is constant (with respect to 
wavenumber) and equal to the dissipation rate. A second, indirect, criterion would 
be the existence of a power-law region in the energy spectrum, with exponent of -8. 
In fact, it  is the latter criterion only which is usually fulfilled in practice. In  this 
paper, we are concerned with freely decaying turbulence, which means that the 
requirement of stationarity is satisfied in an approximate way, as a local property of 
some restricted range of wavenumbers. Evidently, what we need is some practical 
criterion for deciding when this is the case. We begin by writing down the equation 
for the energy spectrum as 

(6.1) 
This is a familiar form, and is readily deduced from the equations given in the present 
paper. 

In  an experimental context, Uberoi (1963) proposed that the condition for an 
inertial range should be that range of wavenumbers for which the time-derivative 
and the viscous terms in the above equation are negligible. This would then give us 
the criteria 

where the transport power 17(k,t) is related to the transfer spectrum by (5.5). This 
is, of course, identical to the rigorous requirement for local stationarity, and Lumley 
(1964) has argued that, in practice, it may be too restrictive. Drawing an analogy 
with flow in a porous pipe, where leakage through the walls mainly controls the 
volumetric flow rate, but affects the mean velocity distribution only slightly, he 
suggested that a non-uniform spectral transfer rate can be interpreted as a ‘leakage’ 
out of mode k. If this leakage is small, then the local spectral form may be unaffected. 
Accordingly, Lumley proposed the following test for the existence of an inertial 
range : 

where the value of d has to be chosen in practice, but in general must be such that 
A 4  1. 

Extensive analyses of experimental data (Bradshaw 1967; Helland, Van Atta & 
Stegen 1977) have borne out Lumley’s view that a necessary condition for 
Kolmogorov -3 scaling to hold at  a given wavenumber is that the energy transfer 
through that wavenumber should be approximately equal to the dissipation rate. In  
particular, Helland et al. (1977) measured energy transfer rates a t  Taylor-Reynolds 
numbers up to R, = 951, and used analytical spectral correlations to extend their 
results up to R ,  = lo6. However, even at  such enormous Reynolds, they were unable 
to find any appreciable range of wavenumbers over which the transfer spectrum 
T ( k , t )  was zero. In all cases, the transfer spectrum exhibited a single sharp zero- 
crossing although as much as three decades of -$ behaviour was found in the 
empirical energy spectrum ! On the other hand, when transfer spectra were replotted 
according to Lumley’s criterion, i t  was possible to reconcile the existence of an 
inertial range in the transfer spectrum with scaling behaviour in the energy spectrum 
at the same wavenumbers. 

With these points in mind, we investigated the development of a Kolmogorov-type 
inertial range in the predictions of the LET theory. The results are given in figures 
3 and 4. In  figures 3 (a )  and 3 ( b ) ,  we show the time evolution of the dissipation rate 
and the maximum value of the transport power (with respect to wavenumber) for 

i?E(k, t)/i?t +2vk2E(k, t )  = T(k,  t ) .  

T(k, t )  = 0;  n(k, t )  = €; (6.2) 

IWk tvnl < A’ (6.3) 
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FIGURE 3. Evolution of E and xmBXx. (a) LET results for test problem 3 :  R,(t,) = 41. (b )  LET 
results for test problem 4 : R,(t,) = 1040. 
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FIGURE 4. Demonstration of energy. (a) LET results for test problem 3:  R,(t,) = 41. ( b )  LET 
results for test problem 4 : R,(t,) = 1040. , T; -----, -aE/at; --, - 2 v ~ 3 ~ .  

test problems 3 (R, = 41) and 4 (R, = 1040), respectively. It is immediately clear that 
a t  the lower Reynolds number there is no question of an inertial range existing, with 
the transport power always much smaller than the dissipation rate. In  contrast, at 
the higher Reynolds number, one notes that the transport power tends asymp- 
totically to the same value as the dissipation rate as time goes on. This contrast 
is underlined by a consideration of the detailed energy balances in wavenumber, as 
shown for the same two cases in figures 4 (a)  and 4 ( b ) .  Both sets of results illustrate 
the action of the nonlinear term rather nicely, but a comparison of the two figures 
shows that only at the higher Reynolds number could one argue that the input and 
output regions are becoming clearly delineated. However, even although 1040 is 
quite a large Reynolds number, it  is clear that there is no extended region over which 
the inertial transfer is zero. At most one could claim that the zero-crossing is a point 
of inflexion for T(k, t ) .  But, when one replots the result - for all four test problems, 
now- in figure 5 ,  then it can be seen that the application of the weaker Lumley 
criterion indicates the development of the inertial range with increasing Reynolds 
number. 
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F I G ~ E  6. Evolved normalized one-dimensional energy spectrum for test problem 4 : comparison 
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t = 0.6, RA(7) = 1039; -----, SCF; t = 0.6, R,(t) = 1059. 

It should be clear from the above discussion that use of spectra to distinguish 
between one theory and another is likely to prove rather fraught. In  figure 6, we show 
results for the one-dimensional energy spectrum, obtained by computing test 
problem 4 with LET, DIA and SCF. On this plot, we note that the three theories are 
virtually indistinguishable. It should also be noted that, with the normalization used 
in plotting this figure, a horizontal region in the spectrum corresponds to -Q scaling. 
On this basis, all three theories appear to be tangent to the Kolmogorov spectrum 
for an appreciable range of wavenumbers. 
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FIGURE 7 .  The evolution of (a) the scalar energy spectrum, ( b )  scalar dissipation spectrum, and (c) 
the scalar transfer spectrum. Basic spectral shape I, R,(O) = 35.4. 1, tu(O)/L(O) = 0 ;  
2, tu(O)/L(O) = 0.5; 3, tu(O)/L(O) = 1.0; 4, tu(O)/L(O) = 1.5. 

6.3. Results for passive scalar convection 
Equations (5.12)-(5.14) were integrated forward in time using the same numerical 
methods as for the velocity field, and the same shapes for initial spectra, as given by 
(4.1). Values of the constants which determine the shape of the spectrum given by 
(4.1) can be found in table 3, along with the other initial values. In  table 4, we give 
values of evolved integral parameters. As in the case of the velocity field, we covered 
a good range of Taylor-Reynolds numbers; and also, in this case, three values of the 
Prandtl number, namely 0.1, 0.5 and 1.0. details of all these calculations and their 
results may be found in the thesis by Filipiak (1991). 

Here we show in figures 7-9 the evolution in time of decaying scalar spectra 
E,, 2 ~ k ~ E ,  and T,, for a Prandtl number of Pr = 0.5, and evolved Taylor-Reynolds 
numbers of 15,40 and 550, respectively. Various forms of scaling were tried, in order 
to demonstrate self-similarity in time of these results (Filipiak 1991). It was found 
that, at medium-to-low Reynolds numbers, scaling based on scalar integral scales 
gave the best collapse of the scalar energy spectrum but, at the highest Reynolds 
numbers, the most effective form of scaling was that based on the Kolmogorov 
variables. However, in the case of the dissipation and transfer spectra, Kolmogorov 
scaling gave the best collapse of data at  all Reynolds numbers. 

The high-Reynolds-number case is particularly interesting, as it has been 
experimentally confirmed (see, for instance, Champagne, Friehe & LaRue 1977) that 
the scalar spectrum should take the form 

for the inertial-convective range of wavenumbers, provided that we have 
E,(k) = Bee e-ik-i, (6.4) 

k < k,, for Pr < 1. (6.5) 
This is found to be the case for the LET results, with the range of wavenumbers 
where the dissipation occurs becoming more distinct from the range where scalar 
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FIGURE 8.  The evolution of (a) the scalar energy spectrum, (b )  the scalar dissipation spectrum, and 
(c) the scalar transfer spectrum. Basic spectral shape IV, R,(O) = 58.5. 1, tu(O)/L(O) = 0 ;  
2, tu(O)/L(O) = 0.25; 3, tu(O)/L(O) = 0.5; 4, tu(O)/L(O) = 0.75. 

FIGURE 9. The evolution of (a) the scalar energy spectrum, (b )  the scalar dissipation spectrum, and 
(c) the scalar transfer spectrum. Basic spectral shape V, Rh(0) = 246. 1, tu(O)/L(O) = 0.08; 
2, tu(O)/L(O) = 0.18; 3, tu(O)/L(O) = 0.28; 4, tu(O)/L(O) = 0.38. 
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production occurs, as the Reynolds number increases: see figures 7(c), 8 ( c )  and 9(c). 
The value of the Oboukhov-Corrsin constant is found to be p = 1.1 and the value of 
the Kolmogorov constant is found to be a = 2.5 for this computation. These values 
are rather larger than the accepted experimental values (0.7 < /3 < 0.8 and 
1.5 < a < 1.7) but i t  is interesting to note that the ratio /3/a = 0.45 is close to the 
accepted experimental value 0.44 (Moeng and Wyngaard 1988). 

We finish with brief comments on the scaling behaviour of the two-time 
correlations and the asymptotic values of the skewness factor, both topics upon 
which we have placed some emphasis in the past, when dealing with the velocity field 
(see 11, 111). 

On the first of these topics, we were interested in comparing convective scaling of 
two-time correlations with inertial-range scaling. In  the scalar case we found much 
the same behaviour as we had with the velocity field. At low-to-medium Reynolds 
numbers, convective scaling seemed to be more effective at collapsing data, whereas 
at  high Reynolds numbers, inertial-range scaling was distinctly better. 

Lastly, the mixed velocity-scalar skewness Sue can be defined by analogy with 
(4.12), for the skewness of one-dimensional derivative of the velocity field. 
Unfortunately, there are too few measurements of this quantity for one to come to 
any definite conclusion, except that the results of the LET calculation of -Sue give 
values of the order 0.3-0.5, depending on both Reynolds number and Prandtl 
number, and that these values are similar to those few results available from 
experiment (Antonia & Chambers 1980) and direct numerical simulation (Kerr 1985). 
Detailed results and some further discussion of this point will be found in the thesis 
by Filipiak (1991). 

7. Conclusions 
The LET theory would seem to have emerged from this exercise quite well. Its 

derivation is simpler ; some inconsistencies have been eliminated ; and a minor error 
has been corrected. As a result, the agreement with numerical experiment has been 
marginally improved; unphysical behaviour has been eliminated (in one case) or 
reduced (in another) and the computational effort required for numerical integration 
of the theory has been greatly reduced. Moreover, the performance of the theory in 
predicting scalar transport may be seen as an encouraging first step on the road to 
practical applications. 

We conclude on a rather speculative note, by remarking that (3.15), which may 
now be seen as the basic unsutz of the LET theory, is identical to the 
fluctuation-dissipation relationship in a form which is not restricted to microscopic 
systems (Kubo 1966). Of course, an association between turbulence theory and the 
fluctuation-dissipation theorem (which is rigorously derived for fluctuations about 
thermal equilibrium), is not new. Herring (1966) noted that the relationship between 
SCF and DIA was of this form. More recently, Kaneda (1981) found that a variant 
of Kraichnan’s Lagrangian-history theories led to a form of FDT, while Nakano 
(1988) has made a wave-packet analysis of DIA, and has associated the resulting 
equations with the FDT. The latter work is particularly interesting from our present 
point of view, as the result is apparently equivalent to a derivation of the LET 
response equation by a different method. All in all, the success of the propagator 
relationship given by (3.15) encourages one to wonder whether or not a viable 
turbulence theory can be obtained by truncating the renormalized perturbation 
expansion of the Navier-Stokes equation at second order and invoking a generalized 
fluctuation-dissipation theorem. This suggests a promising avenue to explore, in 
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order to understand why a theory of this kind gives such good results, and this will 
be the subject of future work. 
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